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O N E  CLASS OF P A R T I A L L Y  I N V A R I A N T  S O L U T I O N S  

OF T H E  N A V I E R - S T O K E S  E Q U A T I O N S  

S. V. Meleshko and V. V. Pukhnachev I UDC 532.516 

A family of partially invariant solutions of the Navier-Stokes equations of rank 2 and defect 
P is considered. These solutions describe the three-dimensional unsteady motions of a viscous 
incompressible fluid in which the vertical velocity component and the pressure are independent 
of the horizontal coordinates. In particular, they can be interpreted as flows in a horizontal 
layer, one boundary of which is the free surface. 

1. Inva r i an t  and  P a r t i a l l y  Inva r i an t  So lu t ions  o f  t he  N a v i e r - S t o k e s  Equat ions .  We analyze 
the system of Navier-Stokes equations 

u t  + u . V u  = - V p  + A u ,  V . u = O, (1.1) 
which is considered from the group-theoretic standpoint. Here u = (u, v, w) is the velocity vector, p is the 
pressure, t is the time, and V and A are the gradient and the Laplacian in variables x = (x, y, z), respectively. 

System (1.1) admits the  infinite-dimensional group of transformations [1] that produces its numerous 
invariant solutions (see [2] and references therein). Many of these solutions have been known for a long time; 
however, their systematic analysis has become possible due to the development of up-to-date methods of 
group analysis of differential equations [3]. At the same time, as far back as the beginning of the twentieth 
century, exact solutions of system (1.1) were found, the group nature of which remained unclear until the 
1970s. The most known of t hem is the yon Ks163 solution [4]. It was found that  the von Ks163 solution 
and its analogs, though having also a group origin, are not the invariant solutions [5]: they relate to the class 
of partially invariant solutions [6] of the Navier-Stokes system. 

A systematic analysis of the partially invariant solutions of system (1.1) has not been performed so far, 
although some representatives of this class were studied in detail [7-11]. As is well known, the main difficulty 
in investigating the partially invariant solutions is the analysis of compatibility of the arising overdeterrninate 
system of equations. In the studies mentioned above, this analysis did not require special efforts. In the present 
paper, the class of partially invariant solutions of system (1.1) of rank 2 and defect 2 is studied, where the 
procedure of reducing an overdeterminate system of equations for four independent variables to a passive 
system is not trivial. 

2. N e w  Class of  P a r t i a l l y  Inva r i an t  So lu t ions  of  Sys tem (1.1). Let us consider the group G 4 
of transformations of Euclidean space ~8 with the coordinates z, y, z, t, u, v, w, and p generated by the 
operators X = 0z, Y = 0y, U = tOx + 0~, and V = toy + Or. Obviously, the group G 4 is admitted by the 
Navier-Stokes system; however, none of the invariant solutions of this system corresponds to it. Indeed, the 
complete set of invariants of the  group G 4 involves z, t, w, and p, so that the rank of the relative Jacobi 
matrix [3] is 2, and the number  of invariants which do not involve unknown functions is also equal to 2. This 
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allows one to find a regular, partially invariant solution [12] of rank 2 and defect 2 of system (1.1) relative to 
the group G 4 in the form 

w = 2 f ( z , t ) ,  p =  p(z,t),  u = u(x ,y , z , t ) ,  v = v (x ,y , z , t ) .  (2.1) 

This class of solutions for the gas dynamic equations is considered in [13]. Instead of the velocity components 
u and v, it is more convenient to choose the functions ~(x, y, z,t) and ~(x, y, z, t), which are related to u and 
v by the formulas 

Of Of 
~, = ~ - z b - ~ z ,  v=~-y-~z. 

The second equation of system (1.1) with (2.1) is then rewritten in the form 

0~ 05 
0--;+N =0, 

and it can be satisfied by introducing the analog of the stream function r = r  y, z, t) by the formulas 

0r 0r 
~=N' ~ =-0-7 

Moreover, the first two scalar equations equivalent to the vector equation of system (1.1) assume the form 

Cy, + ~byd2z~ - g2z!l~yy + 2fCyz - X(fz, + .fzCz~, + 2 f  f~z - f2) _ Yfztl'yy = Ag2y - XB,z, 

(2.2) 
-~bzt - Cyfz~ + r162 - 2fr  - Y(fzt - fzr + 2 f G ,  - ]-2) + xf , r  = - A C z  - YBzz, 

while the third equation is separated and serves to determine the pressure p(z, t) if the function f ( z ,  t) is 
known: 

pz + 2ft - 2fzz + 4 f f z  = O. 

We note that summation of the first equation (2.2) differentiated with respect to x and the second 
equation differentiated with respect to y gives the equation 

- 0 2 r  , 2  _ _  _ 0292 02~b 02f ~ "02f 03f  (O f~  2. (2.3) 

 ozj 

In this equation, the right-hand side depends only on z and t, and, therefore, it can be considered as the 
Monge-Ampere equation with a constant (depending on z and t) right-hand side. 

In this paper, we consider the hyperbolic case where the right-hand side in the Monge-Ampere equation 
(2.3) is nonnegative. We denote it by 

a 2 ( z , t ) _  02f  . . : 0 2 f  03f  (Ofh~ 
OzOt + z ]  Oz 2 Oz 3 \ Oz / " 

It is well known [14] that ,  in this case, the Monge-Ampere equation has the first integral 

O__gg = ( Og~, (2.4) Oy 2az + G z, t, Oz] 

where g(x, y, z, t) = r  y, z, t) + xya(z,  t), and G(z, t, ~) is an arbitrary function of integration. Substituting 
this representation into the first equation of (2.2) and combining with the second equation, we obtain the 
equality 

S - b4g2:: + b5g2z + blgzz + b2gzz - b3 = O, (2.5) 

where 

b , = 4 ~  0~' h= g2~' b4= O~ 2\k-g-(j +1 ,  bb-O~ 2, 
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a~  a~ a2~ a f  
G -- - ~  + 2f  "~z Oz 2 2a~z"  

Furthermore,  differentiating Eq. (2.5) with respect to x and y and making the combinat ion DyS - G~DxS - 
2gzxG~S = 0, we obtain the equality containing the quadratic polynomial in gz~, and gz~: 

~-~,03G ( ( O C ~  ~ , ~ ]  + 1)g  L +~-~g=O3C 2 + c l g =  + c 2 g =  +c3  = 0 .  (2.6) 

Here 

^ 02G ( OG) / 02G OaG ~ ^ 02G 

with certain functions ci (i = 1, 3) which do not depend on x and y explicitly. We do not give some of the 
functions because of their cumbersome form. Hereafter, to treat the involved mathemat ica l  expressions, we 
use the system of analytical calculations REDUCE [15]. For further investigation, it is necessary to consider 
different variants which depend on the  value of the function 02G/O~ 2. 

Variant 1. Let G(~ ~ 0; then Eq. (2.6) with (2.5) can be rewritten as the  quasilinear equation 

algzz + a2gzz + a3 = 0 (2.7) 

with coefficients ai = biG((~-ciG((  (i = 1, 2, 3). The last equation, together with Eq. (2.5), can be considered 
as a system of linear equations in x and y with a determinant equal to G((aG. If G r 0, the two equations 
can be solved for x and y: 

x = r  z,t) ,  y = ~2(gzz,g=z,gz,z, t) .  (2.8) 

Differentiating these equations with respect to x and y~ substituting the expressions for gy, g~y, gz~z, and gzz~ 
into them, and eliminating gxzz from two of them, we arrive at the relations 

" 2 r  + (I)l,2(2O~z + G~g,:zgz~ + G~g..~,) = -G~ ,  

2,1G(ggzx + (I)2,2(2az + G~gxxgxz + Gzgxx) = 1, 

where r = Or and (I)i,2 = O(~i/Ogxz. Using the expressions for the functions r  (i = 1, 2) from the 
last equations, we find gxx = Ol(gx, z, t) and gzz = O2(gx, z,t) .  Introducing these derivatives into (2.8), we 
obtain the contradictory equalities x = ~l (gx , z , t )  and y = ~2(gz,z , t ) ;  therefore, in this case, one should 
consider G = 0 or 

Oa Oc~ 02 a 2c Of  
N + 2 f  ~z Oz 2 O. 

Then,  the coefficients ai, bi, ci (i - 1, 2, 3), b4, and bs do not depend on z and y explicitly. A further analysis 
of equations (2.5) and (2.7) reveals that  they can be solved for the second derivatives g ~  and g~ :  

gzz = r  g=, = q~2(gz, z, t) .  (2.9) 

Variant 1.1. Let (Ih # 0 in Eqs. (2.9); integrating the first equation in (2.9) over z, we have ~(g=, z, t) = 
z + q(y ,z , t )  or 

gz = qO(x + q(y, z, t), z, t) (2.10) 

where q(y, z , t )  is an arbitrary function of integration, and r z, t)  is a certain function. The function 
g(x, y, z, t) must  also satisfy Eq. (2.4) and the second equation in (2.9), i.e., g~ = 2xa + q)3(z + q(y, z, t), z, t) 
and g~, = ~2(x + q(y, z, t), z, t). An investigation of the compatibility of the  last equations and (2.10) leads 
to the representation 

g = - y2ak ( t )  + yA(z,t) + #(x + yk( t ) , z , t ) .  (2.11) 
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Since, in all the representations for the starting variables of pressure and velocity, it is necessary to know only 
the derivatives of the function/~ with respect x and y, we introduce the notation ~(z/, z, t) = (O#/0r/)(~, z, t). 
Substituting (2.11) into Eqs. (2.2) and separating the powers of y, we find that k I = 0, i.e., k = const, while 
the functions a(z, t), h(z, t), and ~(q, z, t) satisfy the equations 

Oct 2fOct 02c~ Of 02f ~ .02 f  03f  v~ 2 (Of'~ 2 
+ o z  - + = + OzOt Z j  oz 2 Oz 3 \ O z ]  ' 

-~Oh + 2fOh~z 02h0z 2 = h(a  + A),  (2.12) 

0~0....~ O~Oz 02~20z 2 (k2 § " 02~ ~'~ + 2 f  1 ) - ~  2 + (h - y (a  + h ) )  + (a  - f~)~2 = 0. 

Here T I = x + ky; moreover, r = y(h - a~/) +/~. 
Variant 1.2. Let ~1 = 0; t h e n  

g = x q l ( y , z , t )  + q 2 ( y , z , t ) .  (2.13) 

By virtue of Eq. (2.4), the functions ql (y, z, t) and q2(y, z, t) become 

g = 2axy + x~(z, t) + ~(2ay + ~(z, t), z, t). 

We note that, if a = 0, this representation is a particular case of the representation (2.11); therefore, we 
assume here that a # 0. Then the equation gzz = r z, t) leads to a further concrete definition of the 
representation (2.13): 

g = 2ct (y + h(z, t)) + t). 

As above, r = O#/Oy. Substituting this form of solution into the starting equations (2.2) and separating them 
with respect to variable x, we obtain the following equations for functions ct(z, t), h(z, t), and ~2(Y, z, t): 

Oct 2fOct 02ct Of 02f - . 0 2 f  03f  ct2 (Of'~ 2 
= 2 c t ~ z ,  ~ + = + St + Oz . O z  2 OzOt Z10z 2 Oz 3 \ Oz ] ' 

cgh 2fOb 02h 2 Oct Oh _h(~__z _ c~), 
O---t + -~z Oz 2 ct Oz Oz = 

02~ 
4- 2 f  OyOz 02~ OyOz 03~Oy 3 (y(fz + ct) + __02r ~yy 2 c t h ) ~ - ~ y  2 + (ct - f ~ )  = 0. Oy--~ " 

Here r = ctxy + 2ctxh + #. 
Variant 2. Let G ~  = 0 or G = a(z, t)gz + h(z, t). This means that the function g(x, y, z, t) must satisfy 

the equation 

gy - a(z,t)gz = 2ctx + h(z,t).  (2.14) 

The solution of the last equation depends on the value of the function a(z, t) and Eqs. (2.5) and (2.6) take 
the form 

g~xa~ + ct(-afz  + aa - b) + 2ct~a~ = 0, (2.15) 

2g~za~ - a(x  + ya) - g~:b - hf~ - (ht + 2fhz - h~z) - cth = O, 

where b - at + 2 f a~ - azz 
Variant 2.1. If a = 0, the general solution of Eq. (2.14) can be represented in the form 

g = 2ctxy + yh + #(x, z, t). 

Substitution of this representation into (2.2) yields 

Oct Ov~ 02ct Of 02f - . 0 2 f  03f  ct2 + ,__,fOf'~ 2, 
0-7 + 2 f  Oz Oz ----5 = 2ct~z' OzO----t + z j  ~ Oz 3 = \ Oz ] 
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9A 9A 02A 
~ -  + 2 f ~ z  Oz 2 

0~ 0~ c32~a 02~a 
0--7 + 2 f -~z cg z 2 cg x 2 

where qa = Og/Oz. 
Variant 2.2. If a -fi 0, the solution of Eq. (2.14) has the form 

ax 2 + xA 
g = + #(x + ya, z , t) ,  

r 

in which #(x + ya, z, t) is so far an arbitrary function. 

= o, (2 .16)  

O f = 
- -  + + - + o ,  

If az ~ O, the first equation in (2.15) implies that the function g(z, y, z, t) is a quadratic polynomial in x 
and y. This corresponds to the linear velocity profile relative to x and y [7]. If az = 0, but at ~ O, again it follows 
from the second equation in (2.15) that the function g(x, y, z, t) is a quadratic polynomial in x and y. Therefore, 
it is necessary to consider the case where the function a(z, t) is constant, the functions ce(z, t), A(z, t), and 
f (z ,  t) satisfy the same equations (2.16) as in the previous case, and the function qo(r/, z, t) = (a#/07l)(r/, z, t) 
must satisfy the equation 

ag~ 0~a 02~a (a 2 + . 02~a 
cgt + 2 f  cgz Oz 2 1)0-'~ 2 + (A + r/(a -- fz)) - (a + fz )~  = O. 

In all the above systems which correspond to the hyperbolic Monge-Ampere equation, the following 
two equations are split off: 

Oa 2fOa 02a _ 2a~.z,Of 02f . ~ .02 f  03f a2 + ( 0 f ) 2  (2.17) 

which can be investigated independently of the other equations. The infinite group G ~176 admitted by system 
(2.17) corresponds to the algebra L 00, which consists of the operators 

Zh = 2h(t)Oz + h'(t)Of, T = Or, R = 2tOt + zOz - 2aOa - fO I 

with an arbitrary function h(t i E C ~176 The commutators of these operators are of the form IT, Zh] = Zh,, 
JR, Zh] = Z2th,-h, IT,/it] = 2T, and [Zhl, Zh2] = 0 (here and henceforth, the prime denotes differentiation of 
the function of one variable with respect to its argument). 

Since to construct the invariant and the partially invariant solutions of system (2.17), knowledge of 
invariants of the corresponding groups is necessary, we classify the subalgebras by the availability of invariants 
of definite forms. 

All the subalgebras of the infinite-dimensional algebra L ~r can be of two types: those which contain 
the extension operator R and those which do not contain one, i.e., (R + cT + Zhl ) ~3 L or L. Here L is the 
subalgebra of the infinite-dimensional algebra consisting of the operators T and Zh. We note that the constant 
c in the operator R + cT + Zhl can be set to zero. This corresponds to the replacement of the time t by the 
time t + c in the invariants. 

In turn, subalgebras L can also be of two types: those which involve the operator T and those which 
do not involve one, i.e., (T + Zhl) ~ L or L. Here L is the subalgebra of the infinite-dimensional algebra 
consisting of operators Zn. 

First of all, we consider the possible invariants of the subalgebras L. If the dimensionality of the first- 
class subalgebra (T + Zha) ~3 L is greater than 2, they have only one invariant a, while the second-class 
subalgebras L of a dimensionality greater than 1 have two invariants: a and t. The invariants for the other 
subalgebras {T + Zhl, Zh2}, {T  + Zh, }, and {Zh} can easily be found. The invaxiants for the subalgebra 

{T + Zhl, Zh2 } are a and f - cz - H(t),  where H(t) = hi (t) - 2cJ  hi (t) dr. Here c is a constant following from 

the requirement that the above operators form a subalgebra. This requirement corresponds to the condition 
IT+ Zhl, Zh2] = 2cZh' 2 and is expressed by the equality h~ = 2ch2, which imposes a constraint on the function 
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h2. For the subalgebra {T + Zhx}, the invariants are z - 2H(t) ,  a,  and f - H ' ( t ) ,  where H(t)  is the integral 
of the function hi. The subalgebra {Zh} has the invariants t, a,  and f - zH( t ) ,  where H(t)  = h'/(2h). 

We now consider all possible invariants of the subalgebras (R + Zh) @ L. If a subalgebra L is the 
subalgebra of the first class (T + Zhl ) @ L and is of dimensionality greater than 2, this subalgebra (R + Zh) @ L 
has no invariants. If L is the subalgebra of the second class L of dimensionality greater than 1, the subalgebra 
(R .3ff Zh 1 ) ~ L has the only invariant ta.  The invariants of the remaining subalgebras {T + Zhl, Zh2, R + Zha }, 
{T + Zh,, R + Zh2}, {Zhl, R + Zh2 }, {R + Zh}, and {R + Zh} can easily be found as well. 

For subalgebras of the form {T + Zhl, Zh2, R + Zha }, the subalgebra condition constrains the functions 
hi(t), h2(t), and h3(t): 

h l ( t ) = H ( t ) - c ,  h 2 = l ,  f f 3 ( t ) = 2 t H ' ( t ) + H ( t )  

with a certain constant c and function H(t) .  These subalgebras have the only invariant a ( f  - H(t)) -2. 
For subalgebras of the form {T + Zhl, R + Zh2 }, the subalgebra condition requires that the functions 

hi(t) and h2(t) satisfy the relations hi(t)  = H'( t)  and h2(t) = 2 t g ' ( t ) - H ( t ) ,  where g ( t ) i s  a certain function. 
The invariants of these suhalgebras are a(z  - 2H(t)) 2 and ( f  - g ' ( t ) ) ( z  - 2g( t ) ) .  

For subalgebras of the form {Zha, R + Zh2}, the subalgebra condition is th'~(t) = 2ch1, where c is a 

certain constant, while the invariants are ta  and ( f  - H( t )  - cz / t ) t  1/2. Here 

H(t )  = l h 2 ( t )  - 

(4c 1)~-i/2 
/ t-3/2h2(t) dr. 

2 

Finally, the subalgebra {R + Zh} has the invariants (z - 2H( t ) ) t -U2 ,  ta, and ( f  - H ' (Q) t  1/2, where h(t) = 
2 tg ' ( t )  - g ( t ) .  

Thus, all the invariants of the subalgebras L r can be of ten types indicated above: 1) a; 2) ta; 
3) a ( f  - H(t))-2;  4) t and a; 5) a and f - cz - H(Q; 6) a(z  - 2H(t)) 2 and ( f  - H ' ( t ) ) ( z  - 2g(t)) ;  7) ta  
and ( f  - H(t)  - cz/ t) t l /2;  8) z - 2H(t) ,  a, and f - g ' ( t ) ;  9) t, a and f - zH( t ) ;  10) (z - 2g( t ) ) t  -1/2, ta, 
and ( f  - H'( t)) tU2 with a certain function H(t)  and constant c. 

3. I n v a r i a n t  So lu t ions  o f  S y s t e m  (2.17). Analysis of the compatibility conditions for partially 
invariant solutions which correspond to invariants 1-4 shows that these solutions reduce either to the case 
where a = 0, or to one of the invariant solutions obtained for invariants 5-10, namely: for type 1, a = 0, and 
for types 2 and 4, a = 0 or the solution is the invariant solution of type 9, and for type 3, a solution exists 
only if a = 0. 

Type 5. There is only one invariant solution a = 0 and f = H(t),  where H(t )  is an arbitrary function 
of time. 

Type 6. The invariant solution has the representation 

Cl c2 

a = (z - 2g( t ) )  2' f = H'(Q + z - 2g( t )  ' 

where cl and c2 are constants which satisfy the relations c1(c2 + 3) = 0 and 3c2(c2 q- 2) ---- c 2. 
Type 7. The invariant solution has the representation a = cl / t  and f = H( t )  + c2z/t ,  where c1 and c2 

are constants which satisfy the relations c~(2c2 + 1) = 0 and c2(c2 + 1) + c 2 = 0. 
Type 8. The invariant solution has the representation a = a(A), f = H' ( t )  + r and A = z + 2q(t). 

Substitution into Eqs. (2.17) yields the S / H  system of ordinary differential equations for the functions a(A) 
and r 

" 2 r 1 6 2  0, r 2 r 1 6 2  ( r  0. 

Type 9. The invariant solution has the representation a = a(t) and f = z H ( t )  + r Substituting 
this into Eqs. (2.17), we obtain a ~ = 2 a l l  ~ and H ~ = a 2 + H 2. The new solution of the last equations, which 
differs from type 7, is of the form (up to the time shift t) 

c c2 t  
a =  ~ H =  

C2t 2 - -  1 '  C2~; 2 - -  i '  
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where c is a constant. 
Type 10. The invariant solution has the representation a = t- lP(A),  f = H'(t)  + t-1/2Q(A),  and 

A = t -1 /2(z  - 2H(t)). Substitution into Eqs. (2.17) yields the following S / H  system of ordinary differential 
equations for the functions P(A) and Q(A): 

2P" + (1 - 4Q)P '  + 4PQ' + 2P  = o, 2Q m + (A - 4Q)Q" + 2(Q') 2 + 2Q' + 2P 2 = o. 

4. The  Group  Strat i f icat ion of S y s t e m  (2.17). The infinite-dimensional group which corresponds 
to the operator Zh has the enhanced operator 2ha, + h'(t)(O I - 2fzO h - 2az0~ t - 2f~0&) + h"Oh, where 

= fz. The universal invariant of the first order (all calculations are similar to those performed during group 
stratification of the system of equations of the plane steady boundary layer [16]) is easily obtained: 

J = ( t , ~ , a , a , , B z , ~ ,  + 2fflz,  at + 2 faz) ;  
1 

therefore, the AG system of rank 2 can be written as follows: 

a = a ( t ,  fl), a~=~( t , /3 ) ,  ~ z = ' y ( t , ~ ) ,  ~ t + 2 f t 3 z = ~ ( t , ~ ) ,  a t + 2 f a z = C ( t , Z ) ,  (4.1) 

where a(t,/~), ~(t,/3), 3,(t,/~), ~(t,/~) and r are the unknown functions. The compatibility conditions for 
the last system and the starting system (2.17) have the form 

~0=Ta~, ~ = % o # + 2 a f l ,  ~ = 7 7 8 + a 2 + ~ 2 ;  (4.2) 

a t  Jr ( a  2 Jr f l2)a  B -- 72a~B ----- 2 a ~ ,  7t Jr ( a2 Jr/~2)7B -- *)'27~ = 2aTa#- (4.3) 

Thus, the group stratification of system (2.17) relative to the infinite-dimensional group with operator Zh is 
the union of the automorphic system (4.1) with functions (4.2) and the governing system which consists of 
Eqs. (4.3). 

R e m a r k  1. System (4.1), (4.3) is equivalent to the starting system (2.17) provided that fzz # 0. The 
case where f~z = 0 corresponds to the above considered invariant solution a = a(t) and f = zq(t) + r 

System (4.3) admits only a two-parameter group which corresponds to the operators T = Ot and 
= tot - 13c3~ - ~0~ - (3/2)r162 The optimal system of subalgebras of the algebra L2 = {T,/~} consists of 

only three representatives: L2, {T}, and {/~}. The invariant solutions of system (4.3) relative to the algebra 
L2 lead to solutions which correspond to the invariant solutions of type 7 for system (2.17). The invariant 
solutions of system (4.3) relative to the subalgebra {T} lead to solutions which correspond to the invariant 
solutions of type 9 for system (2.17). Finally, the invariant solutions of system (4.3) relative to the subalgebra 
{R} can be represented as a = t - lA (A) ,  and r = t-3/2B()t) ,  where ~ = t~ and the functions A(~) and B(~) 
satisfy the S / H  system: 

B2A . _ (A 2 Jr )~2 + $)A' + (1 Jr 25)A = 0, 

B 2 B " - ( A 2 +  A2jr A)B' Jr (~ Jr A A ' ) B = O .  

R e m a r k  2. Apparently, the last type of invariant solution of system (4.3) corresponds to the invariant 
solutions of system (2.17) of type 10; however, the search for this invariant solution is preferred, since after 
the solution of the governing system is found, it is necessary to construct the solution of the automorphic 
system. 

5. Cer ta in  Solut ions  of Sys tem (2.12). We give here some particular solutions of system (2.12) and, 
consequently, some solutions of the three-dimensional Navier-Stokes equations of the above class of partially 
invariant solutions. 

As an example, we consider a solution of the form ~o -- s(t, z)g(r]) (the case where g # const is of 
interest). Substitution of this form of solution into the last equation (2.12) yields 

- ( k  2 + 1)g" + (~ - Tl(a + fz))g' + ag = 0, (5.1) 

where a = s - l ( s t  + 2fs~ - sz~ + (a - f~)s).  After differentiation of Eq. (5.1) with respect to t and z we obtain 
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the consequences 

(At - rl(a + f z ) t ) g '  + atg = O, ()tz - 71(a + f z ) z ) g '  + azg = 0. (5.2) 

Inasmuch as g # 0, the determinant of the last system, which is considered as a system of linear equations 
for g and g', vanishes, which gives the conditions )ttaz - )tzat = 0 and (a  + f z ) t a ,  - ( a  + fz)~at  = O. 

For a = coast, from Eqs. (5.2) we find that A = c o n s t  and a + fz = c o n s t .  However, the first and 
second equations of system (2.12) yield a = - f ~ .  Equation (5.1) is then the ordinary second-order differential 
equation for g(r/) with constant coefficients 

- ( k  2 + 1)g" + Ag' + ag = 0. (5.3) 

Thereby, the prescribed-form solution of system (2.12) is determined, namely, a = - f z ,  A is an arbitrary 
constant, the function g(r/) is found by solving Eq. (5.3), and the functions f ( t ,  z )  and s ( t ,  z )  must satisfy the 
equations f t z  + 2 f  f z z  - f z z z  = 0 and st + 2 f s z  - Szz - (2f~ + a)s  = O, where a is an arbitrary constant. 

The case a # c o n s t  is possible only for g = exp (-aT),  a = - f z ,  and A = ac -1  - c(k  2 + 1) with the 
arbitrary constant c # 0. Moreover, the functions a(t ,  z) ,  f ( t ,  z ) ,  and s( t ,  z )  must satisfy the recursive system 
of differential equations 

f t z  + 2 f f ~  - f~z~ = O, at + 2 f a z  - azz = O, st + 2 f s z  - s ~  - ( 2 f z  + a)s  = O. 

R e m a r k  3. Other types of solution of system (2.12) with separable variables are also possible. For 
example, an analysis of solutions of the form ~ = s( t ,  77) # 0 shows that they are admitted only in the case 
where the solution of the first two equations of system (2.17) is the invariant solution of types 7 or 9. 

R e m a r k  4. The last equation of system (2.12) is linear; moreover, it is the only equation that involves 
three independent variables. One can easily see that the solutions ~(r/, z, t) of this equation, in which the 
functions f ,  a ,  and A of the variables z and t are assumed to be known, involve polynomials of any degree in 
variable r/. The coefficients ~vj(z, t) of these polynomials satisfy the recursive system of parabolic equations, 
which is not given here. 

6. I n t e r p r e t a t i o n  of  t h e  P a r t i a l l y  Invar ian t  Solu t ions  C o n s i d e r e d  A b o v e .  We show that the 
solutions described in Sec. 2 can-be interpreted as the motions with the plane free boundary z = l ( t ) ,  where 
the function l, together with the functions u, v, w,  and p, should be determined. 

First of all, we note that, for the known f ( z ,  t), the function p(z ,  t) is found by means of quadratures 
up to the additive function X(t ) .  By virtue of the arbitrariness of X, the dynamic condition for the normal 
stress at the free boundary - p  + 2 0 w / O z  = 0 for z = l( t)  can always be satisfied after the functions w = 2 f  
and I have been found. 

The kinematic condition at the free boundary has the form d l /d t  = 2 f [ l ( t ) ,  t] and the conditions of 
the absence of tangential stresses, which are initially formulated in terms of functions u, v, and w, lead to the 
equalities 

ev~ - Xfz~ = 0, exz + yfz~ = 0 for z = l( t) .  (6.1) 

Separation of the last equations with respect to the variables x and y forms the boundary conditions for the 
functions which enter system (2.12). For example, in Variant 1.1 (see Sec. 2), relations (6.1) are identically 
satisfied in x and y if the conditions az = fz~ = Az = qaz = 0 hold for z = l ( t ) .  Let the second surface, which 
bounds the fluid, be the plane z = 0. If the equalities 

a = f = f z = A = ~ = O  for z = 0  (6.2) 

hold, the adhesion conditions are satisfied on this plane, and it can be identified with an immovable solid 
boundary. 

Other interpretations are also possible for the solutions corresponding to Variant 1.1 (See. 2), which is 
considered here for definiteness. In particular, if conditions (6.2) for the functions )~ and qo are replaced by the 
inhomogeneous conditions A + k~p = or(t) and -qo = r ( t )  for z = 0 (a and 7" are arbitrary functions of t), the 
adhesion conditions are satisfied on a solid plane z = 0, which moves translationally with a speed V = (a, ~-). 
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Moreover, the second plane, which bounds the liquid layer, can also be a moving free boundary z = re(t). 
R e m a r k  5. System (2.12) admits particular solutions in which a = fz and A = ~o = 0. They relate 

to the planar motions of a fluid which describe, in particular, the process of symmetrical deformation of a 
viscous strip [z[ < l(t) with free boundaries. This process is dealt with in the papers [5, 10, 11]. 

R e m a r k  6. We have considered only the hyperbolic case of the Monge--Ampere equation (2.3). At 
the same time, this equation is compatible with system (2.2) in the elliptic case as well if r is assumed to 
be a quadratic polynomial in the variables x and y. Among the partially invariant solutions of system (1.1) 
obtained in this way, there are solutions which describe the spreading of a viscous fluid with free boundary 
z = l(t) on the plane z = 0 which rotates about the z axis with a specified angular velocity l](t). This problem 
was studied in [5, 8, 9]. 
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